Traitement des signaux

Prof. Jean-Philippe Thiran Laboratoire de traitement des signaux (LTS5)

Prof. Pascal Frossard Laboratoire de traitement des signaux (LTS4)

11 septembre 2024

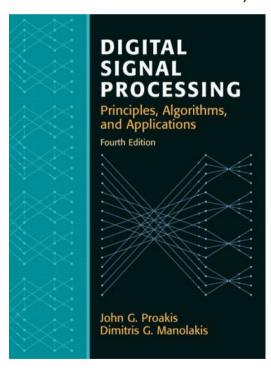
Informations générales

- Objectifs principaux du cours
 - Acquérir les bases du traitement du signal
 - Construire des filtres numériques
 - Développer les connaissances en analyse spectrale

- Prérequis
 - Signaux et Systèmes

Contenu du cours

- Objectif : Présenter les principales notions de traitement des signaux
 - Qu'est-ce qu'un signal typologie
 - Analyse et synthèse de signaux déterministes
 - Théorème de la projection
 - Transformée de Fourier
 - Echantillonnage, quantification et reconstruction
 - Transformée en z (révision)
 - Transformée de Fourier discrète (TFD) et rapide (FFT)
 - Introduction aux systèmes linéaires
 - Filtres numériques (RIF & RII)
 - Estimation et prédiction linéaire
 - Analyse spectrale



Support de cours

- Support du cours
 - Vos notes manuscrites
 - Transparents disponibles sur le moodle

- livre de référence conseillé : John G. Proakis and Dimitris G. Manolakis, «Digital

Signal Processing», Prentice All, 2007

Organisation du cours

- 4h par semaine :
 - Mercredi de 13h15 à 15h
 - Jeudi de 13h15 à 15h
- Cours théoriques (ELD020)
- Exercices (ELD020)
- TP sur ordinateur en Python + Jupyter (ELD020)
- Page *moodle*: moodle.epfl.ch
 - Description
 - Agenda
 - Enoncés des TP/labos
 - Contacts

Evaluation

- Un examen mid-term 50% de la note finale
- Un examen final 50% de la note finale

TAs: vous les trouvez sur la page Moodle du cours

Agenda 2024

• 1ère partie - Prof. Jean-Philippe Thiran

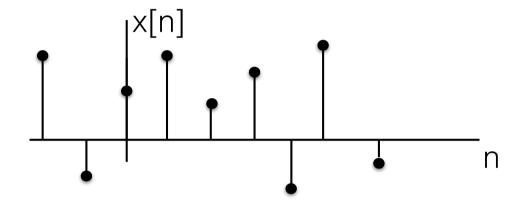
11.09	Cours 1	Intro + signaux déterministes (GRC001)	
12.09	Cours 2	Signaux déterministes - théorème de la projection (ELD020)	
18.09	Cours 3	Signaux déterministes - transformée de Fourier (GRC001)	
19.09	Cours 4	Transformée de Fourier discrète (ELD020)	
25.1	Cours 5	Transformée de Fourier discrète (GRC001)	
26.10	Cours 6	Transformée de Fourier discrète (ELD020)	
02.10	Labo 1	Signaux déterministes (GRC001)	
3.10	Labo 2	Transformée de Fourier discrète (ELD020)	

Agenda 2024

• 2ème partie - Prof. Pascal Frossard

9.10	cours	Structure des systèmes linéaires
10.10	cours / labo	Structure des systèmes linéaires
16.10	lab	Structure des systèmes linéaires
17.10	révision	1ère moitié du cours
30.10	examen midterm	
31.10	cours	Filtres RIF
6.11	cours / lab	Filtres RIF
7.11	lab	Filtres RIF
13.11	cours	Filtres RII
14.11	cours / lab	Filtres RII
20.11	lab	Filtres RII
21.11	cours	Estimation et prédiction linéaire
27.11	cours/lab	Estimation et prédiction linéaire
28.11	lab	Estimation et prédiction linéaire
4.12	cours	Analyse spectrale
5.12	lab	Analyse spectrale
11.12	révision	2ème moitié du cours
12.12		
18.12	examen final	Examen sur la 2ème moitié du cours
19.12		

Le traitement du signal Brève introduction

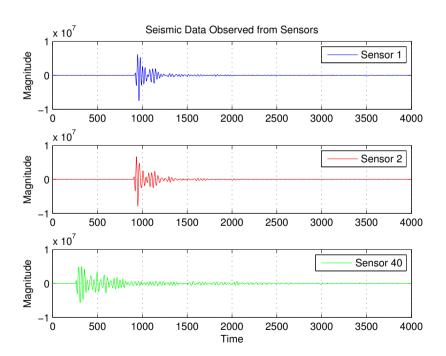

Prof. Jean-Philippe Thiran Signal Processing Laboratory (LTS5) EPFL

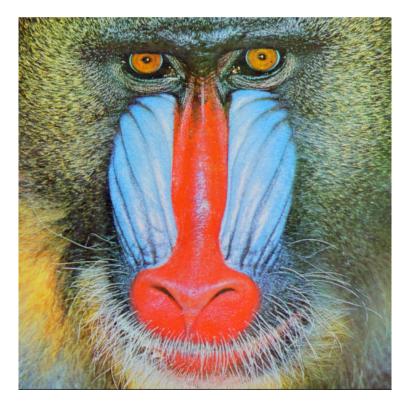
Questions 'existentielles'

Qu'est-ce qu'un signal?

- Qu'est-ce que le traitement du signal?
- Quels sont les outils du traitement du signal?

More: http://AllSignalProcessing.com



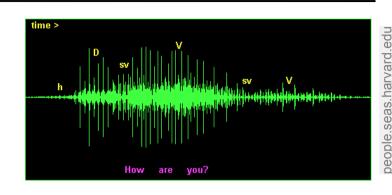

Signal

 Un signal est la représentation de l'évolution d'un quantité (physique) en fonction du temps

ou de l'espace

Signaux sismiques

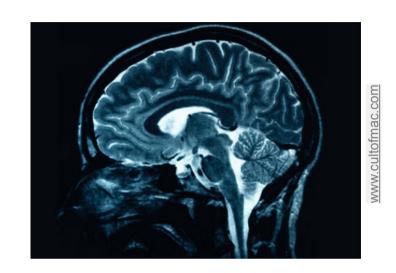
Image

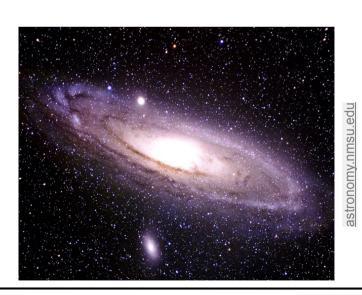


D'autres exemples de signaux

- Son, musique, parole
- Films/vidéo clips
- Emissions de radio ou télévision
- Electro-cardiogramme
- Valeurs de pression
- Cours boursiers
- etc...

Traitement du signal


- Manipulation d'un signal pour le transformer, l'améliorer, ou en extraire des informations
- Le traitement du signal est effectué par l'intermédiaire
 - d'un ordinateur, d'un programme informatique
 - d'un circuit intégré spécifique
 - d'un système électronique



Exemples d'applications

- Electronique grand public
 - TV, caméras, smartphones...
- Transport
 - Localisation GPS, suivi d'avion..
- Medical
 - Imagerie, suivi EEG/ECG...
- Observation
 - Astronomie, suivi de climat, prévision météo...

Problème 1: débruitage

Image bruitée

Image 'débruitée'

Problème 2: reconnaissance

Airplane

Car

visgraph.cs.ust.hk

Person

Traitement des signaux, automne 2024 Prof. Jean-Philippe Thiran Prof. Pascal Frossard

Philosophie du traitement du signal

- Un modèle est souvent utilisé
 - pour caractériser le signal ou le bruit
 - pour relier les valeurs physiques aux valeurs mesurées
- Le modèle est dérivé de connaissances a priori
 - une voiture a généralement 4 roues
 - fréquence de la voix masculine: [85,180] Hz
 - le bruit est gaussien
- Il faut trouver un compromis entre performance et complexité du modèle

Langage du traitement de signal

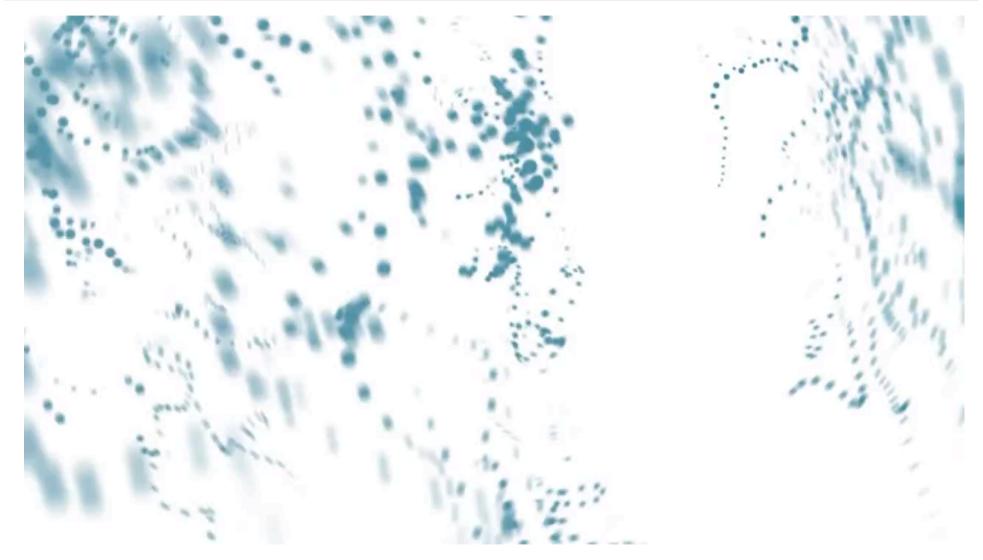
- Mathématiques
 - Analyse
 - Transformée de Fourier
 - Algèbre linéaire

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$x[n] = H^T y[n]$$

- Probabilités et statistiques
 - Modèles de bruit
 - Caractérisation des résultats

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(z-\mu)^2}$$


Résumé

- Le traitement du signal est 'partout'
 - nombreuses applications courantes
- Le traitement du signal est utilisé pour
 - enlever du bruit
 - corriger l'information
 - compresser et transmettre de l'information
 - trouver l'information intéressante ou utile
- Les modèles mathématiques sont importants

IEEE SPS introduction

